Las hormonas son sustancias segregadas por células especializadas, localizadas en glándulas de secreción interna o glándulas endócrinas (carentes de conductos), o también por células epiteliales e intersticiales con el fin de afectar la función de otras células. Hay hormonas animales y hormonas vegetales como las auxinas, ácido abscísico, citoquinina, giberelina y el etileno.
Son transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media al protegerlas de la degradación) y hacen su efecto en determinados órganos o tejidos diana (o blanco) a distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autócrina) o sobre células contiguas (acción parácrina) interviniendo en la comunicación celular .
TIPOS DE HORMONAS
• Hormonas peptídicas. Son derivados de aminoácidos (como las hormonas tiroideas), o bien oligopéptidos (como la vasopresina) o polipéptidos (como la hormona del crecimiento). En general, este tipo de hormonas no pueden atravesar la membrana plasmática de la célula diana, por lo cual los receptores para estas hormonas se hallan en la superficie celular. Las hormonas tiroideas son una excepción, ya que se unen a receptores específicos que se hallan en el núcleo.
• Hormonas lipídicas. Son esteroides (como la testosterona) o eicosanoides (como las prostaglandinas). Dado su carácter lipófilo, atraviesan sin problemas la bicapa lipídica de las membranas celulares y sus receptores específicos se hallan en el interior de la célula diana.
Mecanismos de acción hormonal
Las hormonas tienen la característica de actuar sobre las células diana, que deben disponer de una serie de receptores específicos. Hay dos tipos de receptores celulares:
* Receptores de membrana: los usan las hormonas peptídicas.
* Receptores intracelulares: los usan las hormonas esteroideas. La hormona atraviesa la membrana de la célula diana por difusión. Una vez dentro del citoplasma, penetra incluso en el núcleo, donde se fija el DNA y hace que se sintetice ARNm, que induce a la síntesis de nuevas proteínas.
lunes, 17 de mayo de 2010
LIPIDOS
Los lípidos son un conjunto de moléculas orgánicas la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, ya que las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).
CLASIFICACION DE LIPIDOS
Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
Céridos (ceras)
Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
LIPIDOS SAPONIFICABLES
Son las unidades básicas de los lípidos saponificables, y consisten en moléculas formadas por una larga cadena hidrocarbonada con un número par de átomos de carbono (12-24) y un grupo carboxilo terminal. La presencia de dobles enlaces en el ácido graso reduce el punto de fusión. Los ácidos grasos se dividen en saturados e insaturados.
• Saturados. Sin dobles enlaces entre átomos de carbono; por ejemplo, ácido láurico, ácido mirístico, ácido palmítico, acido margárico, ácido esteárico, ácido araquídico y ácido lignogérico.
• Insaturados. Los ácidos grasos insaturados se caracterizan por poseer dobles enlaces es su configuración molecular. Éstas son fácilmente identificables, ya que estos dobles enlaces hacen que su punto de fusión sea menor que en el resto. Se presentan ante nosotros como líquidos, como aquellos que llamamos aceites. Este tipo de alimentos disminuyen el colesterol en sangre y también son llamados ácidos grasos esenciales.
ACILGLICERIDOS
Los acilglicéridos o acilgliceroles son ésteres de ácidos grasos con glicerol (glicerina), formados mediante una reacción de condensación llamada esterificación. Una molécula de glicerol puede reaccionar con hasta tres moléculas de ácidos grasos, puesto que tiene tres grupos hidroxilo
CERIDOS
Las ceras son moléculas que se obtienen por esterificación de un ácido graso con un alcohol monovalente lineal de cadena larga. Por ejemplo la cera de abeja. Son sustancias altamente insolubles en medios acuosos y a temperatura ambiente se presentan sólidas y duras. En los animales las podemos encontrar en la superficie del cuerpo, piel, plumas, cutícula, etc. En los vegetales, las ceras recubren en la epidermis de frutos, tallos, junto con la cutícula o la suberina, que evitan la pérdida de agua por evaporación.
FOSFOLIPIDOS
Los fosfolípidos se caracterizan por poseer un grupo fosfato que les otorga una marcada polaridad. Se clasifican en dos grupos, según posean glicerol
GLUCOLIPIDOS
Los glucolípidos son esfingolípidos formados por una ceramida (esfingosina + ácido graso) unida a un glúcido, careciendo, por tanto, de grupo fosfato. Al igual que los fosfoesfingolípidos poseen ceramida, pero a diferencia de ellos, no tienen fosfato ni alcohol. Se hallan en las bicapas lipídicas de todas las membranas celulares, y son especialmente abundantes en el tejido nervioso; el nombre de los dos tipos principales de glucolípidos.
LIPIDOS INSAPONIFICABLES:
TERPENOS
Los terpenos, terpenoides o isoprenoides, son lípidos derivados del hidrocarburo isopreno (o 2-metil-1,3-butadieno). Los terpenos biológicos constan, como mínimo de dos moléculas de isopreno. Algunos terpenos importantes son los aceites esenciales (mentol, limoneno, geraniol), el fitol (que forma parte de la molécula de clorofila), las vitaminas A, K y E
ESTEROIDES
Los esteroides son lípidos derivados del núcleo del hidrocarburo esterano (o ciclopentanoperhidrofenantreno), esto es, se componen de cuatro anillos fusionados de carbono que posee diversos grupos funcionales (carbonilo, hidroxilo) por lo que la molécula tiene partes hidrofílicas e hidrofóbicas.
VITAMINAS
La vitaminas son compuestos heterogéneos imprescindibles para la vida, que al ingerirlas de forma equilibrada y en dosis esenciales puede ser trascendental para promover el correcto funcionamiento fisiológico. La gran mayoría de las vitaminas esenciales no pueden ser sintetizadas (elaboradas) por el organismo, por lo que éste no puede obtenerlos más que a través de la ingesta equilibrada de vitaminas contenidas en los alimentos naturales. Las vitaminas son nutrientes que junto a otros elementos nutricionales actúan como catalizadoras de todos los procesos fisiológicos (directa e indirectamente).
Vitamina a
Esta vitamina está presente en los alimentos de origen animal en forma de vitamina A pre-formada y se la llama retino mientras que en los vegetales aparece como provitamina A, también conocidos como carotenos (o carotinoides) entre los que se destaca el beta caroteno.
Las principales fuentes de vitamina A son:
En el reino animal: los productos lácteos, la yema de huevo y el aceite de hígado de pescado.
En los vegetales: En todos los vegetales amarillos a rojos, o verdes oscuros; zanahoria, batata, calabaza, zapallo, ají, espinacas, radicó, lechuga, brócoli, coles de Bruselas, tomate, espárrago
En las frutas: Damasco, durazno, melón, papaya, mango, mamón
Grupo de vitaminas relacionadas con el metabolismo. Al principio se creía que sólo era una pero luego se descubrió que eran varias con funciones parecidas.
Son hidrosolubles, por los que se pueden perder en el agua de cocción y en caso de tomar exceso se eliminan por la orina (hasta un límite).
Estas son las vitaminas del Grupo B, solo las que están en negrilla son aceptadas totalmente como vitaminas:
• Vitamina B-1 (Tiamina)
• Vitamina B-2, conocida también como Vitamina G (Riboflavina)
• Vitamina B-3, conocida también como Vitamina P o Vitamina PP (Niacina)
• Vitamina B-5, conocida también como (Ácido Patogénico)
• Vitamina B-6 (Piridina)
• Vitamina B-8, conocida también como Vitamina H (Biotina)
• Vitamina B-9, conocida también como Vitamina M (Ácido fólico)
• Vitamina B-12 (Cianocobalamina)
Otras sustancias que no son necesarias para la vida humana, se han denominado también del grupo B, pero en realidad no son vitaminas:
• Vitamina B-4 (Adenina)
• Vitamina B-7
• Vitamina B-7* — más comúnmente conocida como Vitamina I
• Vitamina B-10, también Vitamina R (Ácido Pteroylmonoglutemico mezclado con otras vitaminas B )
• Vitamina B-11, también Vitamina S
• Vitamina B-13 (Ácido Pirimidincarboxílico)
• Vitamina B-14 — Una mezcla de B-10 y B-11
• Vitamina B-15 (Ácido Mangánico)
• Vitamina B-16
• Vitamina B-17 (Amigdalina)
• Vitamina B-22, Comúnmente llevada como un ingrediente del Aloe vera
• Vitamina B-c, Otro nombre para la vitamina B-9 ( Ácido fólico )
• Vitamina B-h (Inosita)
• Vitamina B-t (L-Carnitina)
• Vitamina B-w, Otro nombre para la vitamina B-7
• Vitamina Bx o vitamina B10 bacteriana, también PABA
Vitamina b
La vitamina B1 o tiamina
Es fundamental para el proceso de transformación de azúcares y cumple una importante labor en la conducción de los impulsos nerviosos, y en el metabolismo del oxígeno. La B1, se encuentra en la levadura de cerveza, germen de trigo, carne de cerdo, hígado y riñones, pescado, pan integral, alubias cocidas, leche y sus derivados, principalmente.
La vitamina B2 o riboflavina
Por su parte, es pieza clave en la transformación de los alimentos en energía, ya que favorece la absorción de las proteínas, grasas y carbohidratos. Esta vitamina se encuentra en su estado natural en la levadura seca, el hígado, los quesos, los huevos, las setas, el yogurt, la leche, la carne, el pescado, los cereales, el pan integral y las verduras cocidas.
La ausencia de la B2 puede ocasionar anemia, trastornos en el hígado, conjuntivitis, resequedad, dermatitis de la piel y mucosas, además de úlceras en la boca. Para mejores resultados se recomienda no mezclarla con el ácido bórico, la penicilina, etc.
La vitamina B3 o niacina
La vitamina B3, niacina, ácido nicotínico o vitamina PP, con fórmula química C6H5NO2 es una vitamina hidrosoluble cuyos derivados, NADH y NAD+, y NADPH y NADP+, juegan roles esenciales en el metabolismo energético de la célula y de la reparación de ADN.[1] La designación vitamina B3 también incluye a la correspondiente amida, la nicotina mida, o niacina mida, con fórmula química C6H6N2O. Dentro de las funciones de la Niacina se incluyen la remoción de químicos tóxicos del cuerpo y la participación en la producción de hormonas esteroideas sintetizadas por la glándula adrenal, como son las hormonas sexuales y las hormonas relacionadas con el estrés.
La vitamina B5 o ácido patogénico
La vitamina B5 o ácido patogénico es una vitamina hidrosoluble requerida para mantener la vida (nutriente esencial). El Ácido patogénico es necesitado para formar la coenzima a (CoA) y es considerado crítico en el metabolismo y síntesis de carbohidratos, proteínas y grasas. En su estructura química es una amida entre D-pantotenato y beta-alanina. Su nombre deriva del griego Pantothen, que significa “de todas partes”, y pequeñas cantidades de ácido patogénico son encontradas en casi todos los alimentos, con altas cantidades en cereales de grano completo, legumbres, levaduras de cerveza, jalea real, huevos, carne. Es comúnmente encontrado como un análogo de alcohol, la provitamina pantenol y como pantotenato de calcio.
La vitamina B6 o piridoxina
Su papel en el crecimiento, conservación y reproducción de todas las células del organismo, es importantísimo. La aportan la levadura seca, el germen de trigo, el hígado, los riñones, la carne, el pescado, las legumbres, los huevos, la coliflor, los plátanos, las judías verdes y el pan integral.
Mientras que bajos niveles de la misma producen inflamaciones en la piel como pelagra, resequedad, eccemas, además de anemia, diarrea y hasta demencia. la B6 se utiliza con mucho éxito en mujeres menopáusicas, dado que alivia los síntomas de este período.
La vitamina B8 o biotina
La biotina (del griego bios, "vida), vitamina H, vitamina B8 y a veces también llamada vitamina B7, es una vitamina estable al calor, soluble en agua, alcohol y susceptible a la oxidación que interviene en el metabolismo de los hidratos de carbono, grasas, aminoácidos y purinas.
La vitamina B9 o ácido fólico
Resulta indispensable para el sistema nervioso, toda vez que incide positivamente en su crecimiento y funcionamiento, así como también en el de la médula ósea; además, favorece la regeneración de las células. La B9 se encuentra en la espinaca, los berros, las frutas, la zanahoria, el pepino, el hígado, los riñones, el queso, los huevos, la carne y el pescado.
Su carencia provoca cansancio, insomnio e inapetencia, y en las mujeres embarazadas puede traer como consecuencia malformaciones en el feto.
La vitamina B12 o cianocobalamina
Desempeña un papel muy importante en el crecimiento de la persona, contribuye con el desarrollo normal del sistema nervioso, es indispensable para la médula ósea, la síntesis de glóbulos rojos y el correcto funcionamiento del tracto gastrointestinal. Se consigue en huevos, derivados de la leche, hígado, riñones, pescado y carnes.
La falta de B12 trae como consecuencia anemia perniciosa o debilidad en la mielina, membrana protectora de los nervios de la médula espinal y del cerebro. No se recomienda ingerirla junto con la vitamina C, ya que esta última anula su absorción.
Como las vitaminas B son hidrosolubles, no son almacenadas en el cuerpo. Estas vitaminas deben ser reemplazadas diariamente y el exceso es eliminado
CARBOHIDRATOS
Los glúcidos, carbohidratos, hidratos de carbono o sacáridos: son moléculas orgánicas compuestas por carbono, hidrógeno y oxígeno. Son solubles en agua y se clasifican de acuerdo a la cantidad de carbonos o por el grupo funcional que tienen adherido. Son la forma biológica primaria de almacenamiento y consumo de energía. Otras biomoléculas energéticas son las grasas y, en menor medida, las proteínas.
Los carbohidratos se dividen en monosacáridos, disacáridos, oligosacáridos y polisacáridos.
Monosacáridos
Los glusidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacáridos no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres, su límite es de 7 carbonos. Los monosacáridos poseen siempre un grupo carbonilos en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.
Disacáridos
Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante un enlace covalente conocido como enlace glucosídico, tras una reacción de deshidratación que implica la pérdida de un átomo de hidrógeno de un monosacárido y un grupo hidroxilo del otro monosacárido, con la consecuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.
Oligosacárido
Los oligosacáridos están compuestos por entre tres y nueve moléculas de monosacáridos que al hidrolizarse se liberan. No obstante, la definición de cuan largo debe ser un glúcido para ser considerado oligo o polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los trisacáridos (como la rafinosa), tetrasacárido (estaquiosa), pentasacáridos, etc.
Los oligosacáridos se encuentran con frecuencia unidos a proteínas, formando las glicoproteínas, como una forma común de modificación tras la síntesis proteica
Polisacáridos
Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos. Los polisacáridos representan una clase importante de polímeros biológicos. Su función en los organismos vivos está relacionada usualmente con estructura o almacenamiento. El almidón es usado como una forma de almacenar monosacáridos en las plantas, siendo encontrado en la forma de amilosa y la amilopectina (ramificada). En animales, se usa el glucógeno en vez de almidón el cual es estructuralmente similar pero más densamente ramificado. Las propiedades del glucógeno le permiten ser metabolizado más rápidamente, lo cual se ajusta a la vida activa de los animales con locomoción.
Suscribirse a:
Entradas (Atom)